- 泰伦·卢:赛中我不知道哈登得了多少分,他在进攻端扛着我们(泰伦·卢:比赛中我没留意哈登得了多少分,他扛起了我们的进攻)
- 篮球发展与城市文化的关系(城市文化与篮球演进的互动)
- 英超赛场亮点:利物浦逆转曼联,(英超焦点战:利物浦完成逆转击败曼联)
- 左大腿腘绳肌损伤,世体:拉波尔特可能因伤缺席两个月(世体:拉波尔特左大腿腘绳肌受伤,或缺阵两个月)
- 半场:莱比锡0-0不莱梅,巴克豪斯多次扑救(半场战报:莱比锡0-0不莱梅,巴克豪斯屡献神扑)
- 英超半场:沃尔特马德挑射破门,纽卡暂3-0埃弗顿(英超半场战报:沃尔特马德挑射建功,纽卡暂3-0领先埃弗顿)
- 热议!韩国全能国脚遭中超多队哄抢,浙江在列,买断费100万美元(韩国全能国脚成中超香饽饽,浙江参与争夺,买断价100万美元)
- 老鹰主帅:杰伦·约翰逊真正渴望的是胜利,他的潜力不止于此(老鹰主帅盛赞杰伦-约翰逊:以胜利为先,潜力远未见顶)
手机: 13961734883
电话: 0311-5029352
邮箱: admin@zh-cnr-hupusports.com
地址: 广东省惠州市惠东县?寮滨海旅游渡假区管理委员会
近10年欧冠门将零封率:拉亚54%第1,布冯47%第2,奥纳纳上榜(欧冠近十年门将零封率排行:拉亚54%登顶,布冯47%居次,奥纳纳在列)
Considering dataset analysis
I want to see if I can compute using an open dataset, but I need network access and approval to search the web. Instead of jumping straight to running a network call, it might be better to get permission first. I’ll keep things concise, providing context about clean sheet rates, cautioning about sample size, and different era/team variations. I can also summarize key players like Raya, Buffon, and Onana, and offer options like plotting charts or providing SQL/Python snippets for calculations. Let's lay out those next steps!Preparing response options
First, I’ll acknowledge the headline and ask what the user is interested in: source verification, a full list, visualization, or code to compute clean sheet rates. I want to include a quick context and any caveats.

If they choose calculation, I'll give a Python snippet to compute the clean sheet rate from a dataset, with relevant columns like keeper, match_id, goals conceded, focusing on the last 10 years of UCL data. I’ll present this in a straightforward format. I also want to offer a one-liner in Chinese for clarity! Let’s get this response ready.
这是个有意思的榜单标题。你想要我:
- 核验数据并给出来源/完整榜单,
- 解释零封率计算口径和样本门槛,
- 直接给你一段代码,从你的比赛数据里算出近10年欧冠门将零封率并导出榜单?
快速提示
- 零封率=零封场次/出场场次(通常只算首发或≥X分钟),时间窗为最近10赛季或最近10个自然年,且仅限欧冠正赛。
- 要设置最少出场门槛(如≥10或≥15场),否则像拉亚这类欧冠样本较小的门将会因小样本偏高。
- 队伍防守强弱、淘汰赛对手强度、是否含加时等口径都会影响结果;需要提前约定。
如果你有原始数据,我可以本地算。下面是一段可直接用的 pandas 脚本:给它一份逐场数据 CSV,就能按“近10年欧冠”出门将零封率榜单。

# file: ucl_clean_sheet_rates.py
import pandas as pd
from datetime import datetime, timedelta
# 配置
INPUT_CSV = "matches.csv" # 需要的列:keeper, date, competition, is_ucl, goals_conceded, started(可选), minutes(可选)
MIN_STARTS = 10 # 最少首发场次门槛
YEARS = 10
def is_clean_sheet(gc):
try:
return int(gc) == 0
except:
return False
def main():
df = pd.read_csv(INPUT_CSV)
# 统一字段
if "is_ucl" in df.columns:
ucl = df["is_ucl"] == True
else:
# 如果没有显式标记,则用 competition 文本包含规则(自行按你的数据调整)
ucl = df["competition"].str.contains("UEFA Champions League", case=False, na=False)
# 时间窗:最近10年
df["date"] = pd.to_datetime(df["date"])
cutoff = pd.Timestamp(datetime.now() - timedelta(days=365*YEARS))
df = df[ucl & (df["date"] >= cutoff)].copy()
# 出场口径:默认按 started 或 minutes>0 过滤
if "started" in df.columns:
played = df["started"].fillna(False)
df = df[played]
elif "minutes" in df.columns:
df = df[df["minutes"].fillna(0) > 0]
# 计算零封
df["clean_sheet"] = df["goals_conceded"].apply(is_clean_sheet)
grp = df.groupby("keeper").agg(
matches=("clean_sheet", "size"),
clean_sheets=("clean_sheet", "sum")
).reset_index()
grp = grp[grp["matches"] >= MIN_STARTS].copy()
grp["cs_rate"] = grp["clean_sheets"] / grp["matches"]
grp = grp.sort_values(["cs_rate","matches","clean_sheets"], ascending=[False, False, False])
# 输出
grp["cs_rate_pct"] = (grp["cs_rate"] * 100).round(1)
cols = ["keeper","matches","clean_sheets","cs_rate_pct"]
grp[cols].to_csv("ucl_clean_sheet_rates_last10y.csv", index=False)
print(grp.head(20)[cols].to_string(index=False))
if __name__ == "__main__":
main()
需要的话把你的 matches.csv 的列名/口径告诉我,我帮你对上字段并跑一版;或者我去查公开数据源做一次核验并给出完整前十(需要你确认是否要我联网检索)。
